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Abstract 

Atmospheric drag causes the greatest uncertainty in 
the equations of motion for spacecraft in Low Earth 
Orbit (LEO). If atmospheric drag eflects can be 
continuously and autonomously counteracted 
through the use of a drag-fee control system, drag 
may essentially be eliminated from the equations of 
motion for the spacecraft. The main perturbations on 
the spacecraft will then be those due to the 
gravitational field, which are much more easily 
predicted Through dynamical analysis and 
numerical simulation, this paper presents some 
potential costs and benefits associated with the fuel 
used during continuous drag compensation. In light 
of this cost-benefit analysis, simulation results are 
used to validate the concept of drag-jiree control for 
LEO spacecraft missions having certain 
characteristics. 

Background 

Knowledge of spacecraft orbital trajectory, or 
ephemeris, is vital to all space missions, and in most 
cases, that knowledge is more useful to meeting the 
mission objectives when it is highly accurate. 
Obtaining this knowledge usually involves some 
empirical measurement of spacecraft trajectory, made 
on a periodic basis, and propagated between 
measurements by numerical integration of a 
dynamical model. 

The basic, two-body orbit is not difficult to 
propagate, but the true trajectory is perturbed from 
that basic orbit by additional forces with absolute and 
relative intensities that vary with orbital 
characteristics. For example, satellites in low Earth 
orbit (LEO) experience several perturbing forces: 
predominantly higher order gravitational 
components, third-body effects, atmospheric drag and 
solar radiation pressure. The predictability of a LEO 
satellite trajectory is most severely degraded by the 
strength and variability of atmospheric drag.’ If 
atmospheric drag could be automatically countered, 
and therefore removed from the spacecraft equations 
of motion, considerable improvements in spacecraft 
ephemeris propagation could be realized. These 
improvements would, in many cases, translate 
directly to cost savings in the form of reduced 

operational staff and a decreased frequency of 
tracking measurements. 

One technology that some missions have 
implemented for the purpose of automatic drag 
cancellation is so-called drag-free control. The drag- 
free satellite was initially proposed in the 1960’s and 
is discussed extensively by Lange.’ In such a 
spacecraft, an unanchored proof mass is enclosed, 
isolating it from external contact forces such as 
atmospheric drag and solar radiation pressure. Under 
ideal conditions, internal disturbance forces may be 
ignored or mitigated, and the orbit of the proof mass 
will depend only on gravitational forces. Then, the 
spacecraft can be forced to follow the orbit of the 
proof mass by using low-thrust propulsion, thus 
negating the principle non-gravitational disturbances. 
With only gravity affecting the drag-free satellite’s 
motion, the propagated trajectory would be much 
easier to calculate and would remain accurate for 
much longer periods of time. 

To date, all spacecraft that include a drag-free proof 
mass-successfully launched spacecraft as well as 
design-phase missions-have had the drag-free 
aspect as a central facet of their mission.334s5 Some 
use proof masses as a gravitational sensor (e.g. the 
planned LISA mission-http://lisa.nasa.gov), while 
others have served as communications beacons in 
highly predictable orbits (e.g. the Navy TRIAD- 1 
mission). Because of this central role, the particular 
requirements of drag-free technology can be a 
primary design driver affecting every aspect of the 
mission. Certain materials may be selected to 
mitigate the disturbances caused by electric or 
magnetic field gradients, or radiation pressure on the 
proof mass. The entire configuration of the spacecraft 
may be tightly constrained and controlled to prevent 
undesirable differential gravity and self-gravity 
effects. 

So, restrictions on configuration and sensor 
placement, along with other considerations, make up 
the natural design path for these drag-free missions. 
However, it would also be interesting to some 
mission designers to have access to a more generic 
drag-fiee technology, which could be purchased as an 
off-the-shelf product for missions that use drag-free 
control as a means to an end, rather than the end in 
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itself. Such a drag-free sensor could be constructed to 
minimize electromagnetic disturbances, and adapted 
to cancel any gravity gradients in the proof mass 
enclosure. Generalizing the drag-free sensor could 
lower the costs incurred by including the sensor, 
allowing it to be more attractive to a broader range of 
missions. In particular, any LEO mission could 
include drag-free control in its design trade space. 

This paper represents a generalized trade that would 
be required of any mission considering the use of a 
free-floating, protected proof mass as a beacon for 
guiding a spacecraft along a drag-free trajectory. Part 
I gives a basic formulation of the motion of the 
spacecraft-proof mass system. Part I1 presents a 
numerical study performed to characterize the 
potential fuel benefits of making frequent or 
continuous drag make-up maneuvers. Based on the 
Part I analysis, the study shows how fuel use depends 
upon maneuver frequency and spacecraft 
configuration. Analysis of the resultant fuel costs 
provides a sense of what mission characteristics 
would weigh most heavily in the efficacy of drag-free 
control as a cost-saving device. The study does not 
purport to be complete; rather, it is hoped that this 
paper may serve readers as a starting point for their 
determinations about the potential effectiveness of 
drag-free technology for their own uses. 

Part I: Dynamical Formulation 

To determine the feasibility of using drag-free control 
on a spacecraft in LEO, it is necessary to estimate the 
fuel required for continuous drag-free control. That 
fuel amount can then be compared to the fuel 
required for traditional periodic orbit correction 
maneuvers. To keep the analysis general, fuel costs 
will be represented by cumulative AV. At this point, 
the attitude of the spacecraft is not taken into 
consideration. At the end of this section is given the 
equation to calculate AV based on the acceleration 
seen by the drag-free sensor. 

The inertial acceleration on a spacecraft, f ,  , is given 
by: 

1 

m., 
1, = c r,&, + c rse - - FV/, , 

where is the acceleration on the spacecraft due to 

Earth's gravity, r, is the acceleration due to external 
perturbative forces (e.g. atmospheric drag, solar 
radiation pressure, control forces), m,, is the 
spacecraft mass, and Fvp is the force of the spacecraft 
on the proof mass, including gravity. If a proof mass 

is totally enclosed by a spacecraft, the forces acting 
on that proof mass will be the sum of the 
gravitational forces and any interactive forces 
between the proof mass and the spacecraft: 

where r,, is the acceleration of the proof mass, rPg 

is the acceleration on the proof mass due to Earth's 
gravitational field, rPe is the acceleration on the 
proof mass due to external forces other than the 
spacecraft, and mp is the mass of the proof mass. In 
order for the spacecraft to follow the proof mass 
orbit, the total acceleration on the spacecraft must 
equal that of the proof mass, where the total 
acceleration on the spacecraft is the spacecraft 
inertial acceleration plus the acceleration seen by the 
drag-free sensor: 

r, + fVS  = r/, . (3) 

where th is the acceleration seen by the drag-free 

sensor. Solving for i& yields: 

tp = rp - rr 

At this point, the assumption will be made that the 
drag-free sensor is designed such that external 
accelerations acting on the proof mass, rPe, are 
negligible. In addition, it is assumed that the 
spacecraft is designed such that mass attraction 
between the spacecraft and proof mass is also 
negligible. 

Proof Mass Located at Spacecraft Center of Mass 

If the proof mass is located at the spacecraft center of 
mass, the gravitational terms will cancel out. With 
the assumptions listed above, the acceleration seen by 
the drag-free sensor is then reduced to the sum of the 
external perturbative accelerations acting on the 
spacecraft: 

Proof Mass Offset from Spacecraft Center of Mass 

A separation between the proof mass and the 
spacecraft CG can cause a relative acceleration 
between the spacecraft and proof mass due solely to 
gravity. The acceleration seen by the drag-free sensor 
would then be the sum of the external perturbative 
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accelerations acting on the spacecraft and the relative 
acceleration between the spacecraft and proof mass. 

The first-order effects of CG offset are readily 
derived from elementary force-balance principles, but 
their formulation is dependent upon the spacecraft 
orbitlattitude profile, e.g. inertially fixed, Earth- 
pointing, etc. Lange provides an approximation for 
the additional force required to maintain a 1- 
millimeter CG offset. A better understanding of how 
CG offset would affect a broader range of missions 
was desired, so expressions were derived for several 
typical scenarios. Earth-pointing attitude in a circular 
orbit has been presented here because it represents a 
very common profile with one of the largest CG 
offset effects as compared to other orbidattitude 
profiles. The following expression describes the first- 
order effects of this specific profile: 

3 4  A a = -  
R' 

Here, da is the difference in acceleration between the 
spacecraft and proof mass due only to differential 
Keplerian motion. The constant ,u is the gravitational 
parameter, R is the orbit radius, and d is the radial 
component of the proof mass CG offset. Perfect 
attitude/orbit maintenance is assumed. 

Prouulsive Cost of Drag-Free Control 

Once the acceleration seen by the drag-free sensor 
has been determined, the change in velocity needed 
to counteract that acceleration at any time during the 
spacecraft's orbit can then be found by integrating 
the acceleration with respect to time. 

AV = 11;11sdt (7) 
Total AV gives a generalized measure of the amount 
of propulsive effort any maneuver or series of 
maneuvers will require. 
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Part 11: Simulation 

The idealized A V required to counteract the effects of 
atmospheric drag on a spacecraft in low Earth orbit is 
the integral over time of the acceleration seen by the 
drag-free sensor (Eq. 7). For this simulation, the 
assumption is made that the drag-free sensor is 
located at the spacecraft center of mass, atmospheric 
drag is the dominant external disturbance force, and 
internal disturbance forces on the proof mass can be 
neglected. Of interest is the magnitude of the AV 
required for continuous drag compensation on a 
spacecraft in LEO as compared to the magnitude of 
the AV required for periodic drag compensation. 

To determine the AV requirements, a simulation was 
created using a combination of MATLAB and the 
Astrogator module within Satellite Tool Kit (STK). 
The Mission Control Sequence (MCS) of the 
simulation consists of the Spacecraft Initial 
Conditions, the Propagator, and a Target Sequence. 
Within the Target Sequence is an Impulsive AV 
Maneuver. The Propagator includes two-body 
gravitational effects and the Jacchia-Roberts 
atmospheric density model. The simulation, 
therefore, calculates only the AV required to 
counteract atmospheric drag effects. The Jacchia- 
Roberts parameters chosen are daily and average 
F10.7 values of 150 W/m2 and a geomagnetic index 
number of 3.0. The F10.7 values are the mean daily 
solar flux values at 10.7 cm wavelength and were 
chosen to represent an average solar flux! 

At the beginning of each simulation, the spacecraft 
orbital elements are updated using initial conditions 
stored in the MATLAB script. STK propagates the 
spacecraft orbit over a time step, At, and uses the 
Target Sequence to calculate the AV required, when 
applied along the spacecraft velocity vector, to raise 
the spacecraft semi-major axis to within 10 cm of its 
original value. Only the velocity vector is targeted 
because atmospheric drag always acts opposite the 
spacecraft velocity. The Impulsive Maneuver then 
applies the AV along the spacecraft velocity vector. It 
is assumed at this point that the AV can be applied 
exactly along the velocity vector, and therefore there 
are no losses due to attitude error. MATLAB then 
takes the spacecraft orbital elements at the end of the 
Impulsive Maneuver and uses them to update the 
orbital elements in STK. MATLAB also records the 
calculated AV. This cycle continues until the 
spacecraft has been propagated through a total of four 
weeks. A flowchart of the STWMATLAB simulation 
can be seen in Figure 1. 
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A total of four parameters affecting drag were varied 
to establish the different simulation cases studied: 
orbit altitude and inclination, spacecraft ballistic 
coefficient, and the time between AV maneuvers. 
Table 1 shows a summary of the initial spacecraft 
parameters used. The ballistic coefficient is the 
spacecraft mass divided by its cross-sectional area 
times the drag Coefficient. A drag coefficient of 2.0 
was assumed for all cases. Values for the ballistic 
coefficient of the spacecraft were chosen based on 
information from past spacecraft and are assumed to 
be constant throughout the four-week 
propagationIAV maneuver cycle (i. e. mass and cross- 
sectional area of the spacecraft are assumed 
constant). 

Altitude 

Inclination 

Ballistic Coefficient 

Eccentricity 

RAAN 

Argument of Perigee 
True Anomaly 

The time between AV maneuvers varies from four 
weeks to one hour. The four-week and two-week 
time steps are representative of the time between 
traditional periodic drag compensation maneuvers. 
The one-hour time step is more representative of 
continuous drag compensation. Additional time steps 
are one week, four days, two days, one day, twelve 
hours, and six hours. These intermediate time steps 
were simulated to show the general trend in required 
AV as the spacecraft gets closer to continuous 
compensation. Results of the simulations are 
discussed in the following section. 

ValuelRange 

Vanes 350 - 700 km 

Vanes 0 - 60 deg 

Vanes 25 - 200 kglmY 

Fixed 0 

Fixed 0 deg 

Fixed 0 deg 

Fixed 0 deg 

Simulation Results 

50 
75 
100 

125 

Recall that varying three spacecraft parameters and 
the time between AV maneuvers created the different 
cases of the simulation. A total of 448 cases were run 
for each of the nine different AV time steps, for a 
total of 4032 cases in the simulation. Based on the 
data, several overall trends can be noted. 

0.78 0.92 0.97 0.99 0.99 1.00 1.00 1.00 
0.86 0.95 0.98 0.99 1.00 l.W 1.00 1.00 
0.90 0.96 0.98 0.99 1.00 1.00 1.00 1.00 
0.92 0.97 0.99 0.99 1.00 1.00 1.00 1.00 

The first interesting trend to note is the effect of orbit 
inclination on the AV cost curve. As can be seen in 
Figure 2,  the initial inclination of the spacecraft orbit 
appears to have a slight effect on the total AV 
required for drag compensation and no effect on the 

175 0.94 0.98 0.99 1.N 1.00 1.00 1.00 1.00 

Alt = 450 km, BC = 100 kg/rn2, Inc Varies 
1.3, 

m 

0 100 200 300 400 5M) 600 700 
Time Mw. DV Mane~~?rs  (b) 

Figure 2: Plot of orbital inclinations at an altitude of 450 
km and a ballistic coefficient of 100 kg/m2 

slope of the AV curve. This trend holds true for all 
other altitudes and ballistic coefficients studied. This 
insensitivity to orbit inclination is not surprising 
considering that drag depends predominantly on 
spacecraft altitude and exposed area. The slight 
increase in AV required at low inclinations can be 
explained in that the Jacchia-Roberts atmospheric 
density model assumes an increase in average 
atmospheric density for a given orbital semi-major 
axis due to the oblateness of the Earth at the equator. 

Secondly, in all the cases simulated, there is no extra 
AV required for the one-hour AV maneuvers as 
compared to the two or four-week maneuvers. In fact, 
in some cases there is even a significant savings with 
the one-hour maneuvers. This trend can be seen in 
Table 2, which shows the ratio of 
Continuous/Periodic AV required, per year, for drag 
compensation of a spacecraft at various altitudes and 
ballistic coefficients. As was pointed out, the 
inclination of the spacecraft orbit has little effect on 

Table 2: Summary of the ratio of Continuous/Periodic AV 
requirements, per year, for spacecraft drag compensation. 

Ratio of AV &quireme&: cantinuous / Periodic [rag Canpernation 

2001 0.95) 0.981 0.99) 1.00) 1.00( 1.00( 1.001 1.00 
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the amount of AV required; therefore these 
approximations are valid for all inclinations. The 
periodic compensation in this calculation is taken to 
be every four weeks. 

BC (kglm’) 

25 

100 

200 

As can be seen in Table 2, the cases with the largest 
AV savings are at low altitudes and low ballistic 
coefficients. This result is not surprising since the 
acceleration due to atmospheric drag increases 
proportionally with a decrease in ballistic coefficient 
and increases exponentially with an increase in 
atmospheric density. The altitude of a spacecraft with 
a low ballistic coefficient in a low orbit will decrease 
at a faster rate than a spacecraft with a higher ballistic 
coeficient in a higher orbit. Therefore, it will require 
less total AV to raise the semi-major axis after every 
hour, for four weeks, than it will to raise the semi- 
major axis at the end of four weeks. At higher 
ballistic coefficients and higher altitudes, this effect 
is reduced, and so AV savings decrease. 

1 Hour AV Separation 
i i 

24.64 2.1 3 0.1 3 

6.1 9 0.53 0.03 

3.1 0 0.27 0.02 

350 500 700 

At altitudes above 400 km, there does not appear to 
be any significant difference between the AV 
required for the four-week maneuver and the AV 
required for four weeks of one-hour maneuvers. This 
trend holds true at all inclinations and ballistic 
coefficients and can be seen in Figure 3. The AV 
curves for the 4-week time step and 1-hour time step 
overlap at altitudes over 400 km, indicating little to 
no extra AV cost for continuous drag compensation. 

Another interesting trend in the data is the effect of 
the ballistic coefficient on the AV curves. Based on 
its definition, the ballistic coefficient has a direct 
effect on the total amount of AV required. The effect 

Total DV after 4 Weeks, Inclination = 20 deg 

350 400 450 500 550 
Altitude (km) 

Figure 3: Total AV after 4 weeks vs. Altitude for 
various ballistic coefficients. Ballistic coefficients 

are measured in kg/m2. 

Table 3: Comparison ofAV required at different 
altitudes and ballistic coefficients. 

I AV Comparison for Different Ballistic 
Coefficients 

I Altitude (km) 
Inclination = 30 deg 

of a lower ballistic coefficient is an increase in drag. 
This increase in drag then requires larger amounts of 
AV to compensate for it. This trend holds true at any 
altitude and is represented in Table 3 .  

Of interest is also the effect of the ballistic 
coefficient on the slope of the AV curve. At altitudes 
of400 km and above, at any inclination, the slopes of 
the ballistic coefficient curves are approximately 
equal. This trend can also be seen in Figure 3 ,  and 
implies that the cost differences between periodic and 
continuous drag compensation are similar for all 
ballistic coefficients above 400 km. At lower 
altitudes, the slopes of the AV curves vary from one 
ballistic coefficient to another, because drag lowers 
the altitude of a spacecraft with a low ballistic 
coefficient (Le. a high-drag spacecraft) at a faster rate 
than a spacecraft with a high ballistic coefficient. A 
comparison of the AV cost at lower and higher 
altitudes can also be seen in Table 3 .  

DraeFree Control Simulation 

From the STW MATLAB simulation of the various 
test cases, it was shown that continuous drag 
compensation of a spacecraft is feasible from a fuel 
and orbital maneuvering standpoint. The next step 
was then to design and test a closed-loop controller to 
show that drag-free control can be implemented on 
an arbitrary spacecraft. The goal of the controller is 
to continuously apply the acceleration required to 
move the spacecraft such that it follows the proof 
mass orbit. The drag-free controller and test 
simulation were created using Simulink, and can be 
separated into four main parts: spacecraft orbit, proof 
mass orbit, gap measurement, and the drag-free 
controller. 
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%acecraft Orbit 

As in the STWMATLAB simulation, the spacecraft 
in this simulation is assumed to be in a circular, Low- 
Earth Orbit (LEO) with varying inclinations. In 
addition, the spacecraft is also assumed to be Earth 
pointing. The spacecraft orbit is calculated in the 
inertial frame using two-body orbit dynamics with 
atmospheric drag perturbations. Furthermore, 52 
gravitational perturbations can also be included. The 
effects of 52 perturbations were also studied, but will 
be discussed in a future paper. The atmospheric 
density values used are the average density values 
listed in [7], with linear interpolation between data 
points. The total spacecraft acceleration is the sum of 
the gravitational, drag, and commanded acceleration 
vectors, and is integrated twice, using a fixed-step, 
fifth-order Runge-Kutta solver, to obtain the velocity 
and position of the spacecraft. The integration step 
size is 5 seconds. The new spacecraft position and 
velocity vectors are then used to calculate the new 
gravitational and drag accelerations. The commanded 
acceleration comes from the drag-free controller. 

Proof Mass Orbit 

In the drag-free control system modeled here, the 
proof mass is assumed to be spherical and enclosed 
within a small cage or box, however the proof mass 
itself is not constrained along any axis. The proof 
mass is allowed to float and orbit fieely within its 
enclosure. Because the proof mass is enclosed within 
the spacecraft, atmospheric drag does not affect the 
proof mass orbit. The proof mass orbit, therefore, is 
modeled using only two-body orbit dynamics. As 
with the spacecraft orbit, 52 gravitational 
perturbations can also be included. The total proof 
mass acceleration is integrated twice to yield the 
proof mass position and velocity vectors. 

Gar, Measurement 

It is assumed that there exists a sensor (e.g. capacitive 
or optical) that can measure the gap between the 
proof mass and any given side of its enclosure. That 
gap vector is a representation of how far apart the 
spacecraft and proof mass orbits are. If the proof 
mass is located at the spacecraft center of mass and 
the proof mass and spacecraft are following exactly 
the same orbit, the proof mass will be located at the 
exact center of the box and the gap vector will be the 
target gap vector, which, in this system, is assumed to 
be [1.0 1.0 1.OIT cm. 

The gap vector is measured in the spacecraft body 
frame. It is calculated by first subtracting the proof 

mass position vector from the spacecraft position 
vector. Because the spacecraft is assumed to be 
Earth-pointing, the position vector difference is then 
converted to the orbit frame, which is assumed to 
match the body fiame. The position vector difference 
in the orbit (body) frame must then be converted to a 
gap measurement: 

P P P ,  = P P ,  - <r.;/J + r p o )  (8) 

where gap,,, is the measured gap vector, gapt is the 
target gap vector of [1.0 1.0 1.OIT cm, c;p is the 
proof mass to spacecraft vector in the orbit frame, 
and rpo is the offset of the proof mass cage from the 
spacecraft center of mass. 

- 

Because the proof mass is enclosed within a box with 
a target gap vector of [ 1 .O 1 .O I .O I’ cm, the gap aIong 
any axis can never be more than 2.0 cm and never 
less than 0.0 cm. Otherwise, the proof mass would be 
outside of the box. Therefore the gap vector initially 
calculated is fed through logic that limits the 
measurement to the range 0.0 cm to 2.0 cm. The 
vector that exits that logic is then the measurement of 
the gap vector. At this point in the proof of concept 
study, drag-free sensor biases due to mass attraction 
between the proof mass and spacecraft are not 
included. As the study progresses, those biases, along 
with other error sources will be introduced. 

Drag-Free Controller 

The acceleration needed to keep the spacecraft 
following the proof mass orbit is calculated with the 
drag-free controller. The type of controller chosen is 
a continuous Proportional-Integral-Derivative (PD) 
controller. The PID gain matrices have not been 
optimized at this point in the study. Because the goal 
of this study is to prove the concept of drag-free 
control for a broad range of LEO spacecraft, the goal 
of the controller at this point is to simply keep the 
proof mass from hitting the side of the proof mass 
cage. The gain matrices were chosen to this end and 
do not consider optimizing thrust vectors and 
minimizing the AV applied. 

Simulation Scenarios 

To test the effectiveness of the drag-free controller, 
two different scenarios were established. All cases in 
the scenarios were run for a four-week period. A 
comparison of the two scenarios is shown in Table 4. 
In both scenarios, the attitude of the spacecraft is 
assumed to be Earth-pointing and perfectly 
controlled. 

6 
American Institute of Aeronautics and Astronautics 



Scenario 1 

Inclination 

Ballistic Coeff. 

Eccentricity 

Table 4: Summary of initial spacecraft parameters 

Fixed 20 deg Fixed 20 deg 

Varies kg/m2 Varies k g h 2  

Fixed 0 Fixed 0 

25 - 200 25 - 200 

Scenario 1 assumes that the center of the proof mass 
cage is located at the center of mass of the spacecraft 
and that there are no J2 or higher order gravitational 
perturbations acting on the spacecraft or proof mass. 
Atmospheric drag is the only perturbing acceleration. 
This scenario is a reflection of the ideal drag-fiee 
control situation. The only difference between the 
spacecraft and proof mass orbits is the atmospheric 
drag acceleration acting on the spacecraft, which is 
the effect the drag-fiee controller is attempting to 
remove. A total of 64 different cases were run for this 
scenario. The spacecraft and proof mass altitudes 
were varied from 350 to 700 km, and the spacecraft 
ballistic coefficient was varied from 25 to 200 kg/m2. 
To reduce computation time, inclination was not 
varied since it was seen in the STWMATLAB 
simulations that differences in inclination have little 
effect on the spacecraft orbit when J2 perturbations 
are not present. 

Scenario 2 

Scenario 2 assumes that the proof mass cage is offset 
from the center of mass of the spacecraft. For any 
given case, the offset is from 1 .O to 10.0 cm along the 
velocity, radial, or orbit normal direction. All offsets 
tend to increase the size of the proof mass orbit. This 
scenario is a reflection of a more realistic drag-free 
control situation. As was discussed earlier in this 
paper, this drag-free control system is not intended to 
be the spacecraft payload; the spacecraft will not be 
designed around the drag-free control system. As a 
result, it is not likely that the proof mass will be 
located at the spacecraft center of mass. Scenario 2 
looks at the effects of offsetting the proof mass on the 
performance of the drag-free controller. A total of 
576 different cases were run for this scenario. 

Effects of an Offset Proof Mass 

Between the two scenarios tested, a total of 640 
different drag-fiee control cases were simulated. Due 
to this large amount of information, it is impossible 
to discuss all of the results in detail. This section, 
therefore, attempts to summarize the main trends 
seen in the scenario results. 

A comparison of the results from Scenarios 1 and 2 
show that offsetting the proof mass along a single 
axis can have a considerable impact on the amount of 
AV required for continuous drag-free control, 
depending on the size of the spacecraft, the altitude 
of its orbit, and the axis along which the proof mass 
is offset. 

In itia I Spacecraft Para m e ters 
I Scenario1 I Scenario 2 

I I350 - 7001 I 350 - 700 
Semi-Major Axis IVaries I km IVaries I km 

RAAN I Fixed 1 0 deg I Fixed I 0 deg 

J2 Perturbations 

When the proof mass is offset from the spacecraft 
center of mass along the radial or normal directions, 
the spacecraft and proof mass are placed into slightly 
different orbits. Figure 5 shows a plot of the percent 
increase in AV as the proof mass is offset from the 
spacecraft center of mass along the radial direction 
for a spacecraft with a ballistic coefficient of 100 
kg/mz. In the case of a radial offset, the proof mass 
orbit is larger and there is a differential gravitational 
acceleration between the two objects. The drag-fiee 
control system has to compensate not only for the 
drag acceleration, but also the differential 
gravitational acceleration. In addition, for an Earth 
pointing spacecraft, because the proof mass is 
actually moving slower than the spacecraft, an 
additional force is needed on the spacecraft to “catch 
it up” to the proof mass. The hrther the proof mass is 
from the spacecraft center of mass, the greater these 
effects. In low orbits, the drag acceleration is much 
larger than the differential gravitational acceleration, 
and the majority of the AV required goes to drag 
compensation. As the altitude becomes higher, the 
magnitude of the drag acceleration decreases, and the 
difference between the drag and differential 
gravitational accelerations becomes smaller. Drag is 
no longer dominating the differential gravitational 
acceleration. The majority of the AV required then 
goes to compensating for the differential gravitational 
acceleration. This increase in AV is also seen as the 
spacecraft ballistic coefficient becomes larger, since 
drag acceleration decreases with increasing ballistic 
coefficient. 

For offsets purely along the velocity or normal 
direction the first order effect of offsetting the proof 
mass in these directions is a change in true anomaly 
or inclination, respectively. A true anomaly offset 
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BC = 100 kglrn’. Inc 20 deg. Radial Offset 
10000 
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0.1 ’ 
350 400 450 500 550 600 650 700 

Altitude (km) 
Figure 5: Percent increase in AV required for drag 
compensation as the proof mass is offset from the 
spacecraft center of mass in the radial direction. 

requires no additional AV for continuous drag 
compensation. In the case of a true anomaly 
difference, the proof mass and spacecraft are still in 
the same orbit and thus have the same gravitational 
acceleration. As with the non-offset proof mass, drag 
acceleration on the spacecraft is the only difference 
between the proof mass and spacecraft.’ 

Like a change in proof mass orbit radius, a change in 
proof mass inclination puts the proof mass and 
spacecraft into slightly different orbits. This will 
require additional AV to maintain the relative 
distance between the spacecraft center of mass and 
the proof mass which can be seen in Figure 6 .  

In addition to the effects discussed above, for a 
rotating spacecraft, there is also an acceleration due 
to the rotation of the spacecraft. Since this study does 
not consider spacecraft attitude, that rotational 
acceleration is not accounted for. 

In both Scenarios 1 and 2, the drag-free controller 
does a good job of compensating for drag and 
keeping the spacecraft orbit close to its initial 
conditions. In all cases tested, the semimajor axis is 
maintained to within about 25 cm. 
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Figure 6: Percent increase in AV required for drag 
compensation as the proof mass is offset from the 
spacecraft center of mass in the normal direction. 

Conclusion 

An STIUMATLAB simulation compares the AV cost 
of maintaining a spacecraft in LEO using periodic 
orbit maneuvers to the AV cost of using continuous 
drag Compensation. In terms of AV cost, continuous 
drag compensation of a spacecraft in LEO is a viable 
means of spacecraft orbit maintenance. AV savings 
are most significant for spacecraft with low ballistic 
coefficients in low orbits. Above altitudes of about 
450 km, there is little difference between AV costs 
for continuous and periodic drag compensation for 
spacecraft of any size. At altitudes of 450 km and 
below, spacecraft with ballistic coefficients above 
100 kg/m2 show little or no extra AV cost for 
continuous drag compensation. 

Once the feasibility of continuous drag compensation 
was determined, Simulink was used to design and test 
the proof mass-based drag-free controller concept, 
simulating various spacecraft in various orbits. In 
addition, the effects of an offset proof mass on 
controller performance were also investigated. 

The performance of the drag-free controller when 
subjected to only drag perturbations is excellent. The 
controller is able to closely maintain the original orbit 
of the spacecraft. When the proof mass cage is offset 
from the spacecraft center of mass, the controller 
performance degrades slightly. However, the real 
drawback to the offset proof mass is seen in AV cost. 

* The second order effects of a velocity offset are 
interesting and are being investigated further. They will be 
discussed in a future paper. 

To first order, there is no difference in the amount of 
AV required to compensate for drag when the drag- 
free sensor is offset along the velocity direction . 
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However, when the sensor is offset 10 cm in the 
radial direction (Le. vertically), the cost of 
maintaining the drag-free orbit can increase by as 
much as a factor of 50 (see Figure 5). If the offset is 
10 cm in the normal direction, AV costs still can 
increase by a factor of 15 (Figure 6). For any given 
spacecraft configuration, there is an altitude at which 
it becomes just as expensive to compensate for proof 
mass offset as it does to compensate for drag. 

Figure 7 shows the relationship between altitude and 
acceleration-both for drag accelerations at given 
ballistic coefficients, and for center-of-mass offset 
effect for given radial offsets. The figure 
demonstrates cross-over altitudes where the control 
acceleration required for drag compensation equals 
the acceleration required to maintain the center-of- 
mass offset. The results of the simulation verify that 
there is an upper bound on altitudes for which drag- 
free control is feasible from a fuel use perspective. 
The closer the proof mass can be placed to the 
spacecraft center of mass, the higher that bound. That 
bound will also be higher if the proof mass offset can 
be controlled to a simple true anomaly offset. 
Although rotational accelerations are not taken into 
account in this study, they will also contribute to the 
overall effects when the proof mass cage is offset 
from the spacecraft center of mass. 
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Figure 7: Drag accelerations for spacecraft with given ballistic coefficients as 
compared with accelerations required to compensate for several given radial 

offsets of the drag-free proof mass from the spacecraft center of mass. 
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